请选择 进入手机版 | 继续访问电脑版

数学之家

建站
数学爱好者的家园
 找回密码
 注册

QQ登录

只需一步,快速开始

数学之家» 数学之家 查看内容

文章内容

符号函数的分析表达式2

发布者: castelu | 发布时间: 2012-7-16 23:55| 查看数: 374| 评论数: 0|帖子模式

符号函数的分析表达式2

  我们知道,符号函数$f(x)={\rm sgn} x$是数学分析中重要的函数,除了利用分段函数的形式表示以外,它在闭区间$[-\pi,\pi]$上还有一种无穷级数的分析表达式:${\rm sgn}x=\frac{4}{\pi} \sum\limits_{n=1}^{\infty} \frac{1}{2n-1} \sin (2n-1)x$($-\pi<x<\pi$)。
  我们证明${\rm sgn}x=\frac{4}{\pi} \sum\limits_{n=1}^{\infty} \frac{1}{2n-1} \sin (2n-1)x$($-\pi<x<\pi$):
由于函数$f(x)={\rm sgn}x$是按段光滑的,可以在闭区间$[-\pi,\pi]$上展开成Fourier级数。
$$a_0=0,n=0,1,2,\cdot$$
$$b_n=\frac{2}{\pi}\int_0^{\pi} {\rm sgn}x \sin nx {\rm d}x=
\left\{ \begin{array}{l}
0,n为偶数\\
\frac{4}{n\pi},n为奇数
\end{array} \right.
$$
由于$f(x)$在不连续点$x=0$处满足
$$f(0)=\frac{f(-0)+f(+0)}{2}$$
由收敛定理得到
$${\rm sgn}x=\frac{4}{\pi} \sum\limits_{n=1}^{\infty} \frac{1}{2n-1} \sin (2n-1)x(-\pi<x<\pi)$$



最新评论

QQ|网站统计|手机版|小黑屋|数学之家    

GMT+8, 2018-7-18 16:47 , Processed in 1.109375 second(s), 25 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部