|  | 
 
| 习题一28: 试计算下面$n$阶行列式:
 $$\left| {\begin{array}{*{20}{c}}
 {1}&{1}&{\cdots}&{1}\\
 {\cos\alpha_1}&{\cos\alpha_2}&{\cdots}&{\cos\alpha_n}\\
 {\cos2\alpha_1}&{\cos2\alpha_2}&{\cdots}&{\cos2\alpha_n}\\
 {\vdots}&{\vdots}&{}&{\vdots}\\
 {\cos(n-1)\alpha_1}&{\cos(n-1)\alpha_2}&{\cdots}&{\cos(n-1)\alpha_n}
 \end{array}} \right|$$
 
 
 
 解:
 记
 $$D_n=\left| {\begin{array}{*{20}{c}}
 {1}&{1}&{\cdots}&{1}\\
 {\cos\alpha_1}&{\cos\alpha_2}&{\cdots}&{\cos\alpha_n}\\
 {\cos2\alpha_1}&{\cos2\alpha_2}&{\cdots}&{\cos2\alpha_n}\\
 {\vdots}&{\vdots}&{}&{\vdots}\\
 {\cos(n-1)\alpha_1}&{\cos(n-1)\alpha_2}&{\cdots}&{\cos(n-1)\alpha_n}
 \end{array}} \right|$$
 事实上,$\cos nx$可以表为$\cos x$的多项式
 当$n=1$时,$\cos x=\cos x$;当$n=2$时,$\cos 2x=2\cos^2x-1$
 归纳假设对$k=n-1$和$k=n$时成立
 当$k=n+1$时
 $$\begin{eqnarray*}
 \cos (n+1)x&=&\cos nx\cos x-\sin nx\sin x\\
 &=&\cos nx\cos x-[\sin x\sin (n-1)x\cos x+\cos (n-1)x(1-\cos^2x)]\\
 &=&\cos nx\cos x-\sin x\sin (n-1)x\cos x-\cos (n-1)x+\cos (n-1)x\cos^2x\\
 &=&2\cos nx\cos x-\cos (n-1)x
 \end{eqnarray*}$$
 所以$\cos nx$可以表为$\cos x$的多项式
 更进一步地,$\cos nx$满足$Chebyshev$多项式,首项系数为$2^{n-1}$,其中$n>1$
 将$D_n$从第二行起,每行都表示成$\cos \alpha_i(i=1,2,\cdots,n)$的多项式
 应用初等变换,可以得到
 $$\begin{eqnarray*}D_n&=&2^{\sum\limits_{i=1}^{n-2}i}\left| {\begin{array}{*{20}{c}}
 {1}&{1}&{\cdots}&{1}\\
 {\cos\alpha_1}&{\cos\alpha_2}&{\cdots}&{\cos\alpha_n}\\
 {\cos^2\alpha_1}&{\cos^2\alpha_2}&{\cdots}&{\cos^2\alpha_n}\\
 {\vdots}&{\vdots}&{}&{\vdots}\\
 {\cos^{n-1}\alpha_1}&{\cos^{n-1}\alpha_2}&{\cdots}&{\cos^{n-1}\alpha_n}
 \end{array}} \right|\\
 &=&2^{\frac{(n-1)(n-2)}{2}}\prod\limits_{1 \le i<j \le n}(\cos \alpha_j-\cos \alpha_i)
 \end{eqnarray*}$$
 | 
 |