|  | 
 
| 习题一27: 设$f_i(x)$是数域$K$上的$i$次多项式,其首项系数为$a_i(i=0,1,2,\cdots,n-1)$。又设$b_1,b_2,\cdots,b_n$是$K$内一组数。试计算下列$n$阶行列式:
 $$\left| {\begin{array}{*{20}{c}}
 {f_0(b_1)}&{f_0(b_2)}&{\cdots}&{f_0(b_n)}\\
 {f_1(b_1)}&{f_1(b_2)}&{\cdots}&{f_1(b_n)}\\
 {\vdots}&{\vdots}&{}&{\vdots}\\
 {f_{n-1}(b_1)}&{f_{n-1}(b_2)}&{\cdots}&{f_{n-1}(b_n)} \end{array}}
 \right|$$
 
 
 
 解:
 记
 $$D_n=\left| {\begin{array}{*{20}{c}}
 {f_0(b_1)}&{f_0(b_2)}&{\cdots}&{f_0(b_n)}\\
 {f_1(b_1)}&{f_1(b_2)}&{\cdots}&{f_1(b_n)}\\
 {\vdots}&{\vdots}&{}&{\vdots}\\
 {f_{n-1}(b_1)}&{f_{n-1}(b_2)}&{\cdots}&{f_{n-1}(b_n)} \end{array}}
 \right|$$
 构造多项式
 $$F(x)=\left| {\begin{array}{*{20}{c}}
 {f_0(b_1)}&{f_0(b_2)}&{\cdots}&{f_0(x)}\\
 {f_1(b_1)}&{f_1(b_2)}&{\cdots}&{f_1(x)}\\
 {\vdots}&{\vdots}&{}&{\vdots}\\
 {f_{n-1}(b_1)}&{f_{n-1}(b_2)}&{\cdots}&{f_{n-1}(x)} \end{array}}
 \right|$$
 易知$F(x)$为数域$K$上的$n-1$次多项式,且
 $$F(b_1)=F(b_2)=\cdots=F(b_{n-1})=0$$
 令
 $$F(x)=A_{n-1}\prod\limits_{k=1}^{n-1}(x-b_k)$$
 其中$A_{n-1}$为$F(x)$的首项系数
 按最后一列展开后可知
 $$A_{n-1}=D_{n-1}a_{n-1}$$
 所以
 $$\begin{eqnarray*}
 D_n&=&F(b_n)=D_{n-1}a_{n-1}\prod\limits_{k=1}^{n-1}(b_n-b_k)\\
 &=&\prod\limits_{i=0}^{n-1}a_i\prod\limits_{1 \le k<l \le n}(b_l-b_k)
 \end{eqnarray*}$$
 | 
 |