|  | 
 
| 习题一26(3)(5): 计算下列$n$阶行列式:
 (3)
 $$\left| {\begin{array}{*{20}{c}}
 {a_1b_1}&{a_1b_2}&{a_1b_3}&{\cdots}&{a_1b_n}\\
 {a_1b_2}&{a_2b_2}&{a_2b_3}&{\cdots}&{a_2b_n}\\
 {a_1b_3}&{a_2b_3}&{a_3b_3}&{\cdots}&{a_3b_n}\\
 {\vdots}&{\vdots}&{\vdots}&{}&{\vdots}\\
 {a_1b_n}&{a_2b_n}&{a_3b_n}&{\cdots}&{a_nb_n}
 \end{array}} \right|$$
 (5)
 $$\left| {\begin{array}{*{20}{c}}
 {2\cos\alpha}&{1}&{0}&{\cdots}&{\cdots}&{0}\\
 {1}&{2\cos\alpha}&{1}&{\ddots}&{}&{\vdots}\\
 {0}&{1}&{2\cos\alpha}&{\ddots}&{\ddots}&{\vdots}\\
 {\vdots}&{\ddots}&{\ddots}&{\ddots}&{\ddots}&{0}\\
 {\vdots}&{}&{\ddots}&{\ddots}&{\ddots}&{1}\\
 {0}&{\cdots}&{\cdots}&{0}&{1}&{2\cos\alpha}
 \end{array}} \right|$$
 
 
 
 解:
 (3)此题有两个解法
 解法1:
 记
 $$D_n=\left| {\begin{array}{*{20}{c}}
 {a_1b_1}&{a_1b_2}&{a_1b_3}&{\cdots}&{a_1b_n}\\
 {a_1b_2}&{a_2b_2}&{a_2b_3}&{\cdots}&{a_2b_n}\\
 {a_1b_3}&{a_2b_3}&{a_3b_3}&{\cdots}&{a_3b_n}\\
 {\vdots}&{\vdots}&{\vdots}&{}&{\vdots}\\
 {a_1b_n}&{a_2b_n}&{a_3b_n}&{\cdots}&{a_nb_n}
 \end{array}} \right|$$
 当
 $$b_i \ne 0,i=1,2,\cdots,n-1$$
 时
 $$\begin{eqnarray*}D_n&=&\left| {\begin{array}{*{20}{c}}
 {a_1b_1}&{a_1b_2}&{a_1b_3}&{\cdots}&{a_1b_n}\\
 {a_1b_2}&{a_2b_2}&{a_2b_3}&{\cdots}&{a_2b_n}\\
 {a_1b_3}&{a_2b_3}&{a_3b_3}&{\cdots}&{a_3b_n}\\
 {\vdots}&{\vdots}&{\vdots}&{}&{\vdots}\\
 {a_1b_n}&{a_2b_n}&{a_3b_n}&{\cdots}&{\frac{a_{n-1}b_n^2}{b_{n-1}}}
 \end{array}} \right|+
 \left| {\begin{array}{*{20}{c}}
 {a_1b_1}&{a_1b_2}&{a_1b_3}&{\cdots}&{a_1b_n}\\
 {a_1b_2}&{a_2b_2}&{a_2b_3}&{\cdots}&{a_2b_n}\\
 {a_1b_3}&{a_2b_3}&{a_3b_3}&{\cdots}&{a_3b_n}\\
 {\vdots}&{\vdots}&{\vdots}&{}&{\vdots}\\
 {0}&{0}&{0}&{\cdots}&{a_nb_n-\frac{a_{n-1}b_n^2}{b_{n-1}}}
 \end{array}} \right|\\
 &=&\frac{b_n}{b_{n-1}}(a_nb_{n-1}-a_{n-1}b_n)D_{n-1}\\
 &=&\cdots\\
 &=&(-1)^{n+1}a_1b_n\prod\limits_{i=1}^{n-1}(a_ib_{i+1}-a_{i+1}b_i)
 \end{eqnarray*}$$
 当$b_i$至少有一个为$0$
 $$i=1,2,\cdots,n-1$$
 时
 可以归纳假设上式对
 $$n=k-2$$
 时成立,当
 $$n=k-1$$
 时,若
 $$b_{n-1} \ne 0$$
 则已经成立
 若
 $$b_{n-1}=0$$
 由于行列式展开后是多项式函数,多项式是连续函数
 可以用可去间断点的极限值来代替未定义的函数值,进行连续延拓,则也成立
 或者,可以固定其他元,将$n=k-1$时的多元多项式视为关于$b_{n-1}$的一元多项式
 由于,此多项式和上式在无穷多个点上取值相同,所以这两个多项式相等
 解法2:
 记
 $$D_n=\left| {\begin{array}{*{20}{c}}
 {a_1b_1}&{a_1b_2}&{a_1b_3}&{\cdots}&{a_1b_n}\\
 {a_1b_2}&{a_2b_2}&{a_2b_3}&{\cdots}&{a_2b_n}\\
 {a_1b_3}&{a_2b_3}&{a_3b_3}&{\cdots}&{a_3b_n}\\
 {\vdots}&{\vdots}&{\vdots}&{}&{\vdots}\\
 {a_1b_n}&{a_2b_n}&{a_3b_n}&{\cdots}&{a_nb_n}
 \end{array}} \right|$$
 于是
 $$\begin{eqnarray*}D_n&=&a_1\left| {\begin{array}{*{20}{c}}
 {b_1}&{a_1b_2}&{a_1b_3}&{\cdots}&{a_1b_n}\\
 {b_2}&{a_2b_2}&{a_2b_3}&{\cdots}&{a_2b_n}\\
 {b_3}&{a_2b_3}&{a_3b_3}&{\cdots}&{a_3b_n}\\
 {\vdots}&{\vdots}&{\vdots}&{}&{\vdots}\\
 {b_n}&{a_2b_n}&{a_3b_n}&{\cdots}&{a_nb_n}
 \end{array}} \right|\\
 &=&a_1\left| {\begin{array}{*{20}{c}}
 {b_1}&{a_1b_2-a_2b_1}&{a_1b_3-a_3b_1}&{\cdots}&{a_1b_n-a_nb_1}\\
 {b_2}&{0}&{a_2b_3-a_3b_2}&{\cdots}&{a_2b_n-a_nb_2}\\
 {b_3}&{0}&{0}&{\cdots}&{a_3b_n-a_nb_3}\\
 {\vdots}&{\vdots}&{\vdots}&{}&{\vdots}\\
 {b_n}&{0}&{0}&{\cdots}&{0}
 \end{array}} \right|\\
 &=&(-1)^{n-1}a_1\left| {\begin{array}{*{20}{c}}
 {a_1b_2-a_2b_1}&{a_1b_3-a_3b_1}&{\cdots}&{a_1b_n-a_nb_1}&{b_1}\\
 {0}&{a_2b_3-a_3b_2}&{\cdots}&{a_2b_n-a_nb_2}&{b_2}\\
 {0}&{0}&{\cdots}&{a_3b_n-a_nb_3}&{b_3}\\
 {\vdots}&{\vdots}&{}&{\vdots}&{\vdots}\\
 {0}&{0}&{\cdots}&{0}&{b_n}
 \end{array}} \right|\\
 &=&(-1)^{n+1}a_1b_n\prod\limits_{i=1}^{n-1}(a_ib_{i+1}-a_{i+1}b_i)
 \end{eqnarray*}$$
 (5)
 记
 $$D_n=\left| {\begin{array}{*{20}{c}}
 {2\cos\alpha}&{1}&{0}&{\cdots}&{\cdots}&{0}\\
 {1}&{2\cos\alpha}&{1}&{\ddots}&{}&{\vdots}\\
 {0}&{1}&{2\cos\alpha}&{\ddots}&{\ddots}&{\vdots}\\
 {\vdots}&{\ddots}&{\ddots}&{\ddots}&{\ddots}&{0}\\
 {\vdots}&{}&{\ddots}&{\ddots}&{\ddots}&{1}\\
 {0}&{\cdots}&{\cdots}&{0}&{1}&{2\cos\alpha}
 \end{array}} \right|$$
 按第一(行)列展开
 $$D_n=2\cos\alpha D_{n-1}-D_{n-2}$$
 也即
 $$D_n-2\cos\alpha D_{n-1}+D_{n-2}=0$$
 此差分方程的特征方程是
 $$\lambda^2-2\cos\alpha\lambda+1=0$$
 解得一对共轭复根
 $$\lambda_{1,2}=\cos\alpha \pm i\sin\alpha$$
 根据$De Moivre$公式
 $$\begin{eqnarray*}
 D_n&=&A(\cos (n-1)\alpha+i\sin (n-1)\alpha)+B(\cos (n-1)\alpha-i\sin (n-1)\alpha)\\
 &=&(A+B)\cos (n-1)\alpha+(A-B)i\sin (n-1)\alpha
 \end{eqnarray*}$$
 由于$D_1=2\cos\alpha$,$D_2=4\cos^2\alpha-1$,代入可解得
 $$\left\{ \begin{array}{l}
 A+B=2\cos\alpha\\
 (A-B)i=\frac{\cos 2\alpha}{\sin\alpha}
 \end{array} \right.$$
 所以,当$\sin\alpha \ne 0$,也即$\alpha \ne k\pi$时
 $$\begin{eqnarray*}
 D_n&=&2\cos\alpha\cos (n-1)\alpha+\frac{\cos 2\alpha}{\sin\alpha}\sin (n-1)\alpha\\
 &=&\frac{\sin 2\alpha\cos(n-1)\alpha+\cos 2\alpha\sin(n-1)\alpha}{\sin\alpha}\\
 &=&\frac{\sin (n+1)\alpha}{\sin\alpha}
 \end{eqnarray*}$$
 当
 $$\alpha = k\pi$$
 时
 由于行列式展开后是多项式函数,它是连续函数,三角函数也是连续函数
 所以它们的复合函数也是连续函数,可以用可去间断点的极限值来代替未定义的函数值,进行连续延拓
 $$\begin{eqnarray*}
 D_n&=&\lim\limits_{\alpha \to k\pi}\frac{\sin (n+1)\alpha}{\sin\alpha}\\
 &=&\lim\limits_{\alpha \to k\pi}(n+1)\cos n\alpha(L'Hospital法则)\\
 &=&(n+1)\cos^n \alpha
 \end{eqnarray*}$$
 综上所述
 $$D_n=\left\{ \begin{array}{l}
 \frac{\sin (n+1)\alpha}{\sin\alpha}, \alpha \ne k\pi\\
 (n+1)\cos^n \alpha, \alpha = k\pi
 \end{array} \right.$$
 
 | 
 |