|  | 
地板
 
 
 楼主|
发表于 2008-3-22 20:31:24
|
只看该作者 
现在解答这些题3.
| 3.、由题意,得 ( x - y) [ ( x - y) ^2 + 3 xy ] = z^2 . ①
 因y 是质数,z不能被y和3整除结合式①,知
 ( x , y) = 1 , ( x - y ,3) = 1.则( x^2 + xy + y^2 , x - y) = (3 xy , x - y) = 1. ②
 由式①、②,得
 x - y = m^2 , x^2 + xy + y^2 = n^2 , z = mn,( m、n ∈N+ ) .
 故3 y^2 = 4 n^2 - (2 x + y)^ 2
 = (2 n + 2 x + y) (2 n - 2 x - y) .
 又y 为质数, 且2 n - 2 x - y < 2 n + 2 x + y , 因
 此,有下列3 种情形:
 (i) 2 n - 2 x - y = y ,2 n + 2 x + y = 3 y.
 得x = 0 ,舍去.
 (ii) 2 n - 2 x - y = 3 ,2 n + 2 x + y = y^2 . 于是,
 y^2 - 3 = 4 x + 2 y = 4( m^2 + y) + 2 y = 4 m^2 + 6 y ,
 即 ( y - 3)^ 2 - 4m^2 = 12.
 解得y = 7 , m = 1.
 所以, x = 8 , y = 7 , z = 13.
 (iii) 2 n - 2 x - y = 1 ,2 n + 2 x + y = 3 y2 . 于是,
 3 y^2 - 1 = 4 x + 2 y = 4 ( m^2 + y) + 2 y
 = 2 (2m^2 + 3 y) ,
 即 3 y^2 - 6 y - 3m^2 = m^2 + 1.
 所以, m^2 + 1 ≡0 (mod 3) .
 但这与m^2 ≡0 ,1 (mod 3) 矛盾.
 综上所述,满足条件的正整数组是唯一的,即
 (8 ,7 ,13) .
 | 
 |