数学之家

建站
数学爱好者的家园
 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 1432|回复: 0
打印 上一主题 下一主题

[已解决] 蓝以中上册 双线性函数与二次型 370页 习题四10 解答

[复制链接]
跳转到指定楼层
楼主
发表于 2016-7-8 17:45:58 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
习题四10:
  证明:
(1)如果
$$f=\sum\limits_{i=1}^n\sum\limits_{j=1}^na_{ij}x_ix_j(a_{ij}=a_{ji})$$
  是正定二次型,那么
$$g(y_1,y_2,\cdots,y_n)=\left| {\begin{array}{*{20}{c}}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}&{y_1}\\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}&{y_2}\\
{\vdots}&{\vdots}&{}&{\vdots}&{\vdots}\\
{a_{n1}}&{a_{n2}}&{\cdots}&{a_{nn}}&{y_n}\\
{y_1}&{y_2}&{\cdots}&{y_n}&{0}
\end{array}} \right|$$
  是负定二次型。
(2)如果$A$是正定矩阵,那么
$$|A| \le a_{nn} \cdot P_{n-1}$$
  其中$P_{n-1}$是$A$的$n-1$阶顺序主子式
(3)如果$A$是正定矩阵,那么
$$|A| \le a_{11}a_{22} \cdots a_{nn}$$
(4)如果$T=(t_{ij})$是$n$阶实可逆矩阵,那么
$$|T|^2 \le \prod\limits_{i=1}^n(t_{1i}^2+t_{2i}^2+\cdots+t_{ni}^2)$$



解:
(1)$A$正定,故存在$n$阶实可逆矩阵$T$,使
$$T'AT=E$$
  现作分块矩阵运算
$$\left( {\begin{array}{*{20}{c}}
{T'}&{0}\\
{0}&{1}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{A}&{Y}\\
{Y'}&{0}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{T}&{0}\\
{0}&{1}
\end{array}} \right)=\left( {\begin{array}{*{20}{c}}
{T'AT}&{T'Y}\\
{Y'T}&{0}
\end{array}} \right)=\left( {\begin{array}{*{20}{c}}
{E}&{Z}\\
{Z'}&{0}
\end{array}} \right)$$
  这里
$$Z=\left( {\begin{array}{*{20}{c}}
{z_1}\\
{z_2}\\
{\vdots}\\
{z_n}
\end{array}} \right)=T'\left( {\begin{array}{*{20}{c}}
{y_1}\\
{y_2}\\
{\vdots}\\
{y_n}
\end{array}} \right)$$
  是$R$上一可逆线性变数替换。上面矩阵等式两边取行列式即得
$$\begin{eqnarray*}
|T|^2g(y_1,y_2,\cdots,y_n)&=&\left| {\begin{array}{*{20}{c}}
{1}&{0}&{0}&{\cdots}&{0}&{z_1}\\
{0}&{1}&{0}&{\cdots}&{0}&{z_2}\\
{0}&{0}&{1}&{\ddots}&{\vdots}&{z_3}\\
{\vdots}&{\vdots}&{\ddots}&{\ddots}&{0}&{\vdots}\\
{0}&{0}&{\cdots}&{0}&{1}&{z_n}\\
{z_1}&{z_2}&{z_3}&{\cdots}&{z_n}&{0}
\end{array}} \right|\\
&=&\left| {\begin{array}{*{20}{c}}
{1}&{0}&{\cdots}&{0}&{z_2}\\
{0}&{1}&{\ddots}&{\vdots}&{z_3}\\
{\vdots}&{\ddots}&{\ddots}&{0}&{\vdots}\\
{0}&{\cdots}&{0}&{1}&{z_n}\\
{z_2}&{z_3}&{\cdots}&{z_n}&{0}
\end{array}} \right|+(-1)^nz_1\left| {\begin{array}{*{20}{c}}
{0}&{1}&{0}&{0}&{\cdots}&{0}\\
{0}&{0}&{1}&{0}&{\cdots}&{0}\\
{0}&{0}&{0}&{1}&{\ddots}&{0}\\
{\vdots}&{\vdots}&{\vdots}&{\ddots}&{\ddots}&{\vdots}\\
{0}&{0}&{0}&{\cdots}&{0}&{1}\\
{z_1}&{z_2}&{z_3}&{\cdots}&{z_{n-1}}&{z_n}
\end{array}} \right|\\
&=&h(z_2,\cdots,z_n)-z_1^2
\end{eqnarray*}$$
  现在对$n$作数学归纳法
  当$n=1$时
$$g(y_1)=\left| {\begin{array}{*{20}{c}}
{a_{11}}&{y_1}\\
{y_1}&{0}
\end{array}} \right|=-y_1^2$$
  显然是负定的
  设对$n-1$个变元,题中结论已成立,即
$$h(z_2,\cdots,z_n)=\left| {\begin{array}{*{20}{c}}
{1}&{0}&{\cdots}&{0}&{z_2}\\
{0}&{1}&{\ddots}&{\vdots}&{z_3}\\
{\vdots}&{\vdots}&{\ddots}&{0}&{\vdots}\\
{0}&{0}&{\cdots}&{1}&{z_n}\\
{z_2}&{z_3}&{\cdots}&{z_n}&{0}
\end{array}} \right|$$
  是负定的,对任意非零$Y$,$Z=T'Y$也非零,于是
$$g(y_1,\cdots,y_n)=\frac{1}{|T|^2}(h(z_2,\cdots,z_n)-z_1^2)<0$$
  这表明
$$g(y_1,\cdots,y_n)$$
  是负定二次型
(2)设
$$A_{n-1}=\left( {\begin{array}{*{20}{c}}
{a_{11}}&{\cdots}&{a_{1,n-1}}\\
{\vdots}&{}&{\vdots}\\
{a_{n-1,1}}&{\cdots}&{a_{n-1,n-1}}
\end{array}} \right),B_{n-1}=(a_{n-1,1},\cdots,a_{n-1,n-1})$$
  那么
$$A=\left( {\begin{array}{*{20}{c}}
{A_{n-1}}&{B'_{n-1}}\\
{B_{n-1}}&{a_{nn}}
\end{array}} \right)$$
$$|A|=\left| {\begin{array}{*{20}{c}}
{A_{n-1}}&{B'_{n-1}}\\
{B_{n-1}}&{a_{nn}}
\end{array}} \right|=\left| {\begin{array}{*{20}{c}}
{A_{n-1}}&{0}\\
{B_{n-1}}&{a_{nn}}
\end{array}} \right|+\left| {\begin{array}{*{20}{c}}
{A_{n-1}}&{B'_{n-1}}\\
{B_{n-1}}&{0}
\end{array}} \right|$$
  根据$Hurwitz$定理,$A_{n-1}$为正定矩阵,再由上面小题知
$$\left| {\begin{array}{*{20}{c}}
{A_{n-1}}&{B'_{n-1}}\\
{B_{n-1}}&{0}
\end{array}} \right| \le 0$$
  从而
$$|A| \le \left| {\begin{array}{*{20}{c}}
{A_{n-1}}&{0}\\
{B_{n-1}}&{a_{nn}}
\end{array}} \right|=a_{nn}|A_{n-1}|$$
(3)根据第(2)小题,结论显然成立。
(4)现在$T'T=T'ET$为正定矩阵,而$T'T$主对角线上元素为
$$t_{1i}^2+t_{2i}^2+\cdots+t_{ni}^2$$
  根据第(3)小题,有
$$|T|^2=|T'T| \le \prod\limits_{i=1}^n(t_{1i}^2+t_{2i}^2+\cdots+t_{ni}^2)$$
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 分享淘帖 顶 踩
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|网站统计|手机版|小黑屋|数学之家    

GMT+8, 2024-4-19 12:07 , Processed in 1.203125 second(s), 22 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表