请选择 进入手机版 | 继续访问电脑版

数学之家

建站
数学爱好者的家园
 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 3066|回复: 0

[已解决] 裴礼文 一元函数极限 78页 例1.5.7 解答

[复制链接]
发表于 2016-3-29 23:58:29 | 显示全部楼层 |阅读模式
例1.5.7:

  设数列$\left\{p_n\right\}$,$\left\{q_n\right\}$满足
$$p_{n+1}=p_n+2q_n,q_{n+1}=p_n+q_n,p_1=q_1=1$$
  求
$$\lim\limits_{n \to \infty}\frac{p_n}{q_n}$$



解法1:
  令
$$a_n=\frac{p_n}{q_n}$$
  则
$$\begin{eqnarray*}
\left|a_{n+1}-a_n \right|&=&\left|\frac{p_{n+1}}{q_{n+1}}-\frac{p_n}{q_n} \right|\\
&=&\left|\frac{p_n+2q_n}{p_n+q_n}-\frac{p_{n-1}+2q_{n-1}}{p_{n-1}+q_{n-1}} \right|\\
&=&\left|\frac{p_{n-1}q_n-p_nq_{n-1}}{\left(p_n+q_n\right)\left(p_{n-1}+q_{n-1}\right)} \right|\\
&=&\left|\frac{q_nq_{n-1}}{\left(p_n+q_n\right)\left(p_{n-1}+q_{n-1}\right)} \right|\left|a_n-a_{n-1} \right|\\
&=&\left|\frac{1}{\left(\frac{p_n}{q_n}+1\right)\left(\frac{p_{n-1}}{q_{n-1}}+1\right)} \right|\left|a_n-a_{n-1} \right|\\
&<&\frac{1}{4}\left|a_n-a_{n-1} \right|\\
\end{eqnarray*}$$
  根据压缩映像原理,数列$\left\{a_n\right\}$收敛
  注意到
$$a_{n+1}=\frac{p_{n+1}}{q_{n+1}}=\frac{p_n+2q_n}{p_n+q_n}=1+\frac{q_n}{p_n+q_n}=1+\frac{1}{1+a_n}$$
  不妨设
$$\lim\limits_{n \to \infty}a_n=a$$
  对递推式两边求极限
$$a=1+\frac{1}{1+a}$$
  由于
$$a_n \ge 1,a=\sqrt{2}$$
  即
$$\lim\limits_{n \to \infty}\frac{p_n}{q_n}=\sqrt{2}$$



解法2:
  将双变量递推改写成矩阵形式
$$\left( {\begin{array}{*{20}{c}}
{p_n}\\
{q_n}
\end{array}} \right)=\left( {\begin{array}{*{20}{c}}
1&2\\
1&1
\end{array}} \right)
\left( {\begin{array}{*{20}{c}}
{p_{n-1}}\\
{q_{n-1}}
\end{array}} \right)$$
  由递推公式得到
$$\left( {\begin{array}{*{20}{c}}
{p_n}\\
{q_n}
\end{array}} \right)=\left( {\begin{array}{*{20}{c}}
1&2\\
1&1
\end{array}} \right)^{n-1}
\left( {\begin{array}{*{20}{c}}
{p_1}\\
{q_1}
\end{array}} \right)$$
  令
$$A = \left( {\begin{array}{*{20}{c}}
1&2\\
1&1
\end{array}} \right)$$
  可知$A$的特征多项式
$$\left|\lambda E - A\right|=\lambda^2-2\lambda-1$$
  可知$A$的特征值
$$\lambda_1=1+\sqrt{2},\lambda_2=1-\sqrt{2}$$
  经过计算
$$\exists P=
\left( {\begin{array}{*{20}{c}}
\sqrt{2}&-\sqrt{2}\\
1&1
\end{array}} \right),
P^{-1}AP=
\left( {\begin{array}{*{20}{c}}
{1+\sqrt{2}}&0\\
0&{1-\sqrt{2}}
\end{array}} \right)$$
  于是
$$\begin{eqnarray*}
A^{n-1}&=&P
\left( {\begin{array}{*{20}{c}}
\left(1+\sqrt{2}\right)^{n-1}&0\\
0&\left(1-\sqrt{2}\right)^{n-1}
\end{array}} \right)P^{-1}\\&=&
\frac{1}{2\sqrt{2}}\left( {\begin{array}{*{20}{c}}
{\sqrt{2} \left( \left( 1+\sqrt{2} \right)^{n-1}+\left( 1-\sqrt{2} \right)^{n-1} \right)}&{2 \left( \left( 1+\sqrt{2} \right)^{n-1}-\left( 1-\sqrt{2} \right)^{n-1} \right)}\\
{\left( 1+\sqrt{2} \right)^{n-1}-\left( 1-\sqrt{2} \right)^{n-1}}&{\sqrt{2} \left( \left( 1+\sqrt{2} \right)^{n-1}+\left( 1-\sqrt{2} \right)^{n-1} \right)}
\end{array}} \right)\\
\end{eqnarray*}$$
  所以
$$\frac{p_n}{q_n}=\frac{\left( 2+\sqrt{2} \right) + \left( -2+\sqrt{2} \right)\left( 2\sqrt{2} - 3 \right)^{n-1}}{\left( 1+\sqrt{2} \right) + \left( -1+\sqrt{2} \right)\left( 2\sqrt{2} - 3 \right)^{n - 1}}$$
  令
$$n \to \infty$$
  得到
$$\lim\limits_{n \to \infty}\frac{p_n}{q_n}=\sqrt{2}$$


回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|网站统计|手机版|小黑屋|数学之家    

GMT+8, 2024-4-19 09:48 , Processed in 1.171875 second(s), 23 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表