|
习题三6:
设$f,g,h$是数域$K$上三个一元多项式,证明
$$R(fg,h)=R(f,h) \cdot R(g,h)$$
解:
设
$$\deg f=m,\deg g=n,\deg h=k$$
又设$f$首项系数为$a_0$,$g$首项系数为$b_0$
让$f$在$C$内$m$个根是
$$\alpha_1,\alpha_2,\cdots,\alpha_m$$
$g$在$C$内$n$个根是
$$\beta_1,\beta_2,\cdots,\beta_n$$
那么,我们有
$$\begin{eqnarray*}
R(fg,h)&=&(a_0b_0)^k\prod\limits_{i=1}^mh(\alpha_i)\prod\limits_{j=1}^nh(\beta_j)\\
&=&a_0^k\prod\limits_{i=1}^mh(\alpha_i) \cdot b_0^k\prod\limits_{j=1}^nh(\beta_j)\\
&=&R(f,h)R(g,h)
\end{eqnarray*}$$ |
|