请选择 进入手机版 | 继续访问电脑版

数学之家

建站
数学爱好者的家园
 找回密码
 注册

QQ登录

只需一步,快速开始

数学之家» 数学之家 查看内容

文章内容

高维Lagrange乘数法

发布者: castelu | 发布时间: 2017-11-8 23:09| 查看数: 1441| 评论数: 0|帖子模式

  对$R^n$中$n$个向量$v_1$,$v_2$,$\cdots$,$v_n$,定义外积
$$(v_1,v_2,\cdots,v_n) \to v_1 \wedge v_2 \wedge \cdots \wedge v_n \in R,$$
  要求它具有下列性质:
(i)乘法线性:按每个变量都是线性的。
(ii)反交错性:若对某对$i$,$j$使$v_i=v_i$($i \ne j$),则$v_1 \wedge v_2 \wedge \cdots \wedge v_n=0$;若在外积中交换两个向量的位置,则外积改变符号:
$$v_i \wedge \cdots \wedge v_i \wedge \cdots \wedge v_j \wedge \cdots \wedge v_n$$
$$=-v_i \wedge \cdots \wedge v_j \wedge \cdots \wedge v_i \wedge \cdots \wedge v_n。$$
(iii)规范性:$e_1 \wedge e_2 \wedge \cdots \wedge e_n=1$,其中$\mathop {\left\{e_i \right\}}\limits_{i=1}^n$是$R^n$中标准基。

  若$v_i=a_{i1}e_1+\cdots+a_{in}e_n$,我们将证明$v_1 \wedge v_2 \wedge \cdots \wedge v_n$即为矩阵$(a_{ij})$的行列式。
  事实上,
$$v_1 \wedge \cdots \wedge v_n=(a_{11}e_1+a_{12}e_2+\cdots+a_{1n}e_n) \wedge \cdots \wedge (a_{n1}e_1+a_{n2}e_2+\cdots+a_{nn}e_n)$$
$$=\sum\limits_r a_1,_{\tau(1)}e_{\tau(1)} \wedge \cdots \wedge a_n,_{\tau(n)}e_{\tau(n)}$$
$$=\sum\limits_r a_1,_{\tau(1)} \cdots a_n,_{\tau(n)}e_{\tau_1} \wedge \cdots \wedge e_{\tau(n)},$$
  其中$\tau$是($1,2,\cdots,n$)的置换,求和是在所有置换上进行的。由于反交错性
$$e_{r(1)} \wedge e_{r(2)} \wedge \cdots \wedge e_{r(n)}=\epsilon(\tau) e_1 \wedge e_2 \wedge \cdots \wedge e_n=\epsilon(\tau),$$
  当$\tau$为偶置换时$\epsilon(\tau)=1$,当$\tau$为奇置换时$\epsilon(\tau)=-1$,于是有
$$v_1 \wedge v_2 \wedge \cdots \wedge v_n=\det (a_{ij})。$$

最新评论

QQ|网站统计|手机版|小黑屋|数学之家    

GMT+8, 2024-4-18 18:35 , Processed in 1.359375 second(s), 34 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部