数学之家

建站
数学爱好者的家园
 找回密码
 注册

QQ登录

只需一步,快速开始

数学之家» 数学之家 查看内容

文章内容

Bessel不等式

发布者: castelu | 发布时间: 2017-11-8 22:46| 查看数: 1376| 评论数: 0|帖子模式

定理(Bessel不等式) 若函数$f$在$[-\pi,\pi]$上可积,则
$$\frac{a_0^2}{2}+\sum\limits_{n=1}^{\infty} (a_n^2+b_n^2) \le \frac{1}{\pi}\int_{-\pi}^{\pi} f^2(x)dx,$$
其中$a_n$,$b_n$为$f$的Fourier系数。上式称为Bessel不等式。

推论1 若$f$为可积函数,则
$$\left\{ \begin{array}{l} \lim\limits_{n \rightarrow \infty}\int_{-\pi}^{\pi} f(x)\cos nxdx=0\\ \lim\limits_{n \rightarrow \infty}\int_{-\pi}^{\pi} f(x)\sin nxdx=0 \end{array} \right.$$

  这个推论也称为Riemann-Lebesgue定理。

推论2 若$f$为可积函数,则
$$\left\{ \begin{array}{l} \lim\limits_{n \rightarrow \infty}\int_0^{\pi} f(x)\sin (n+\frac{1}{2})xdx=0\\ \lim\limits_{n \rightarrow \infty}\int_{-\pi}^0 f(x)\sin (n+\frac{1}{2})xdx=0 \end{array} \right.$$

最新评论

QQ|网站统计|手机版|小黑屋|数学之家    

GMT+8, 2024-4-23 22:45 , Processed in 1.140625 second(s), 23 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部