| 
 | 
	
 
习题二13: 
  给定数域$K$上的$m$阶方阵$A$和$n$阶方阵$B$,满足$A^2=0$,$B^2=0$。又设 
$$C,D \in M_{m,n}(K)$$ 
  令 
$$F=\left( {\begin{array}{*{20}{c}} 
{A}&{C}\\ 
{0}&{B} 
\end{array}} \right),G=\left( {\begin{array}{*{20}{c}} 
{A}&{D}\\ 
{0}&{B} 
\end{array}} \right)$$ 
  如果 
$$r(F)=r(G)=r(A)+r(B),r(AC+CB)=r(AD+DB)$$ 
  证明$F,G$在$K$内相似。 
 
  
解: 
  因为 
$$A^2=0,B^2=0$$ 
  故$A,B$均为幂零矩阵,其若尔当形中若尔当块最高阶为二阶。现设它们的若尔当形为$A_1,B_1$,即 
$$T_1^{-1}AT_1=A_1=\left( {\begin{array}{*{20}{c}} 
{J_1}&{0}\\ 
{0}&{0} 
\end{array}} \right),J_1=\left( {\begin{array}{*{20}{c}} 
{D_1}&{}&{}&{}\\ 
{}&{D_1}&{}&{}\\ 
{}&{}&{\ddots}&{}\\ 
{}&{}&{}&{D_1} 
\end{array}} \right)_{2r \times 2r}$$ 
$$T_2^{-1}BT_2=B_1=\left( {\begin{array}{*{20}{c}} 
{J_2}&{0}\\ 
{0}&{0} 
\end{array}} \right),J_2=\left( {\begin{array}{*{20}{c}} 
{D_1}&{}&{}&{}\\ 
{}&{D_1}&{}&{}\\ 
{}&{}&{\ddots}&{}\\ 
{}&{}&{}&{D_1} 
\end{array}} \right)_{2s \times 2s}$$ 
  其中 
$$D_1=\left( {\begin{array}{*{20}{c}} 
{0}&{1}\\ 
{0}&{0} 
\end{array}} \right)$$ 
  于是有 
$$F_1=\left( {\begin{array}{*{20}{c}} 
{T_1^{-1}}&{0}\\ 
{0}&{T_2^{-1}} 
\end{array}} \right)\left( {\begin{array}{*{20}{c}} 
{A}&{C}\\ 
{0}&{B} 
\end{array}} \right)\left( {\begin{array}{*{20}{c}} 
{T_1}&{0}\\ 
{0}&{T_2} 
\end{array}} \right)=\left( {\begin{array}{*{20}{c}} 
{A_1}&{T_1^{-1}CT_2}\\ 
{0}&{B_1} 
\end{array}} \right)$$ 
$$G_1=\left( {\begin{array}{*{20}{c}} 
{T_1^{-1}}&{0}\\ 
{0}&{T_2^{-1}} 
\end{array}} \right)\left( {\begin{array}{*{20}{c}} 
{A}&{D}\\ 
{0}&{B} 
\end{array}} \right)\left( {\begin{array}{*{20}{c}} 
{T_1}&{0}\\ 
{0}&{T_2} 
\end{array}} \right)=\left( {\begin{array}{*{20}{c}} 
{A_1}&{T_1^{-1}DT_2}\\ 
{0}&{B_1} 
\end{array}} \right)$$ 
  $F_1$与$F$相似,$G_1$与$G$相似,只需证$F_1$与$G_1$相似 
  矩阵左乘、右乘满秩方阵其秩不变,故有 
$$r(F_1)=r(F)=r(A)+r(B)=r(A_1)+r(B_1)=r+s$$ 
$$r(G_1)=r(G)=r(A)+r(B)=r(A_1)+r(B_1)=r+s$$ 
  又设 
$$T_1^{-1}CT_2=\overline C,T_1^{-1}DT_2=\overline D$$ 
  那么 
$$\begin{eqnarray*}  
A_1\overline C+\overline CB_1&=&(T_1^{-1}AT_1)(T_1^{-1}CT_2)+(T_1^{-1}CT_2)(T_2^{-1}BT_2)\\ 
&=&T_1^{-1}(AC+CB)T_2 
\end{eqnarray*}$$ 
$$\begin{eqnarray*}  
A_1\overline D+\overline DB_1&=&(T_1^{-1}AT_1)(T_1^{-1}DT_2)+(T_1^{-1}DT_2)(T_2^{-1}BT_2)\\ 
&=&T_1^{-1}(AD+DB)T_2 
\end{eqnarray*}$$ 
  故有 
$$\begin{eqnarray*} 
r(A_1\overline C+\overline CB_1)&=&r(AC+CB)=r(AD+DB)\\ 
&=&r(A_1\overline D+\overline DB_1) 
\end{eqnarray*}$$ 
  因此,我们不妨直接设 
$$A=\left( {\begin{array}{*{20}{c}} 
{J_1}&{0}\\ 
{0}&{0} 
\end{array}} \right),B=\left( {\begin{array}{*{20}{c}} 
{J_2}&{0}\\ 
{0}&{0} 
\end{array}} \right)$$ 
  再将$C$分块如下 
$$C=\left( {\begin{array}{*{20}{c}} 
{C_1}&{C_2}\\ 
{C_3}&{C_4} 
\end{array}} \right),C_1=\left( {\begin{array}{*{20}{c}} 
{c_{11}}&{c_{12}}&{\cdots}&{c_{1,2s}}\\ 
{c_{21}}&{c_{22}}&{\cdots}&{c_{2,2s}}\\ 
{\vdots}&{\vdots}&{}&{\vdots}\\ 
{c_{2r,1}}&{c_{2r,2}}&{\cdots}&{c_{2r,2s}} 
\end{array}} \right)$$ 
  此时$F$表示成 
$$F=\left( {\begin{array}{*{20}{c}} 
{J_1}&{0}&{C_1}&{C_2}\\ 
{0}&{0}&{C_3}&{C_4}\\ 
{0}&{0}&{J_2}&{0}\\ 
{0}&{0}&{0}&{0} 
\end{array}} \right)$$ 
  当$A=0$或$B=0$时,我们有 
$$ACB=ADB=0$$ 
  下面设 
$$A \ne 0,B \ne 0$$ 
  在$J_1$的第$1,3,\cdots,2r-1$行有一个$1$,利用它们经初等列变换把其右边所有元素消为$0$ 
  $J_2$的第$2,4,\cdots,2s$列有一个$1$,利用它们经初等行变换把其上边所有元素消为$0$。如此可把$C_1$化为 
$$\left( {\begin{array}{*{20}{c}} 
{0}&{0}&{0}&{0}&{\cdots}&{0}&{0}\\ 
{c_{21}}&{0}&{c_{23}}&{0}&{\cdots}&{c_{2,2s-1}}&{0}\\ 
{0}&{0}&{0}&{0}&{\cdots}&{0}&{0}\\ 
{c_{41}}&{0}&{c_{43}}&{0}&{\cdots}&{c_{4,2s-1}}&{0}\\ 
{\vdots}&{\vdots}&{\vdots}&{\vdots}&{}&{\vdots}&{\vdots}\\ 
{0}&{0}&{0}&{0}&{\cdots}&{0}&{0}\\ 
{c_{2r,1}}&{0}&{c_{2r,3}}&{0}&{\cdots}&{c_{2r,2s-1}}&{0} 
\end{array}} \right)$$ 
  如果$c_{21} \ne 0$,利用它经初等行、列变换可把$F$的第$2$行所有其他元素化为$0$,第$m+1$列所有其他元素化为$0$ 
  如此则立得 
$$r(F)>r(J_1)+r(J_2)=r(A)+r(B)$$ 
  与题设矛盾 
  故必 
$$c_{21}=0$$ 
  同理,必有 
$$c_{2i,2j-1}=0(i=1,2,\cdots,r;j=1,2,\cdots,s)$$ 
  于是$C_1$可进一步写成如下分块形式 
$$C_1=\left( {\begin{array}{*{20}{c}} 
{M_{11}}&{M_{12}}&{\cdots}&{M_{1s}}\\ 
{M_{21}}&{M_{22}}&{\cdots}&{M_{2s}}\\ 
{\vdots}&{\vdots}&{}&{\vdots}\\ 
{M_{r1}}&{M_{r2}}&{\cdots}&{M_{rs}} 
\end{array}} \right),M_{ij}=\left( {\begin{array}{*{20}{c}} 
{*}&{*}\\ 
{0}&{*} 
\end{array}} \right)$$ 
  现在 
$$\begin{eqnarray*} 
D_1M_{ij}D_1&=&\left( {\begin{array}{*{20}{c}} 
{0}&{1}\\ 
{0}&{0} 
\end{array}} \right)\left( {\begin{array}{*{20}{c}} 
{m_1}&{m_2}\\ 
{0}&{m_3} 
\end{array}} \right)\left( {\begin{array}{*{20}{c}} 
{0}&{1}\\ 
{0}&{0} 
\end{array}} \right)\\ 
&=&\left( {\begin{array}{*{20}{c}} 
{0}&{m_3}\\ 
{0}&{0} 
\end{array}} \right) 
\left( {\begin{array}{*{20}{c}} 
{0}&{1}\\ 
{0}&{0} 
\end{array}} \right)=\left( {\begin{array}{*{20}{c}} 
{0}&{0}\\ 
{0}&{0} 
\end{array}} \right) 
\end{eqnarray*}$$ 
  于是 
$$\begin{eqnarray*}J_1C_1J_2&=&\left( {\begin{array}{*{20}{c}} 
{D_1}&{}&{}&{}\\ 
{}&{D_1}&{}&{}\\ 
{}&{}&{\ddots}&{}\\ 
{}&{}&{}&{D_1} 
\end{array}} \right)\left( {\begin{array}{*{20}{c}} 
{M_{11}}&{M_{12}}&{\cdots}&{M_{1s}}\\ 
{M_{21}}&{M_{22}}&{\cdots}&{M_{2s}}\\ 
{\vdots}&{\vdots}&{}&{\vdots}\\ 
{M_{r1}}&{M_{r2}}&{\cdots}&{M_{rs}} 
\end{array}} \right)\left( {\begin{array}{*{20}{c}} 
{D_1}&{}&{}&{}\\ 
{}&{D_1}&{}&{}\\ 
{}&{}&{\ddots}&{}\\ 
{}&{}&{}&{D_1} 
\end{array}} \right)\\ 
&=&\left( {\begin{array}{*{20}{c}} 
{D_1M_{11}D_1}&{D_1M_{12}D_1}&{\cdots}&{D_1M_{1s}D_1}\\ 
{D_1M_{21}D_1}&{D_1M_{22}D_1}&{\cdots}&{D_1M_{2s}D_1}\\ 
{\vdots}&{\vdots}&{}&{\vdots}\\ 
{D_1M_{r1}D_1}&{D_1M_{r2}D_1}&{\cdots}&{D_1M_{rs}D_1} 
\end{array}} \right)=0 
\end{eqnarray*}$$ 
  利用这结果,我们有 
$$ACB=\left( {\begin{array}{*{20}{c}} 
{J_1}&{0}\\ 
{0}&{0} 
\end{array}} \right)\left( {\begin{array}{*{20}{c}} 
{C_1}&{C_2}\\ 
{C_3}&{C_4} 
\end{array}} \right)\left( {\begin{array}{*{20}{c}} 
{J_2}&{0}\\ 
{0}&{0} 
\end{array}} \right)= 
\left( {\begin{array}{*{20}{c}} 
{J_1C_1J_2}&{0}\\ 
{0}&{0} 
\end{array}} \right)=0$$ 
  同理,由 
$$r(G)=r(A)+r(B)$$ 
  也推出 
$$ADB=0$$ 
  现在 
$$F^2=\left( {\begin{array}{*{20}{c}} 
{0}&{AC+CB}\\ 
{0}&{0} 
\end{array}} \right),G^2=\left( {\begin{array}{*{20}{c}} 
{0}&{AD+DB}\\ 
{0}&{0} 
\end{array}} \right)$$ 
$$F^3=\left( {\begin{array}{*{20}{c}} 
{0}&{ACB}\\ 
{0}&{0} 
\end{array}} \right)=0,G^3=\left( {\begin{array}{*{20}{c}} 
{0}&{ADB}\\ 
{0}&{0} 
\end{array}} \right)=0$$ 
  故$F,G$均为幂零矩阵,有唯一特征值$\lambda_0=0$ 
  而 
$$r(F)=r(G),r(F^2)=r(AC+CB)=r(AD+DB)=r(G^2),r(F^3)=r(G^3)=0$$ 
  $F,G$的若尔当形中 
  一阶若尔当块个数为 
$$r(F^0)+r(F^2)-2r(F)=r(G^0)+r(G^2)-r(G)$$ 
  二阶若尔当块个数为 
$$r(F)+r(F^3)-2r(F^2)=r(G)+r(G^3)-2r(G^2)$$ 
  三阶若尔当块个数为 
$$r(F^2)+r(F^4)-2r(F^3)=r(G^2)+r(G^4)-2r(G^3)$$ 
  四阶以上若尔当块个数均为$0$ 
  因此,$F,G$的若尔当形相同,即$F$与$G$相似 
  现考查 
$$F=\left( {\begin{array}{*{20}{c}} 
{J}&{0}\\ 
{0}&{J} 
\end{array}} \right),G=\left( {\begin{array}{*{20}{c}} 
{J}&{E}\\ 
{0}&{J} 
\end{array}} \right)$$ 
  其中 
$$J=\left( {\begin{array}{*{20}{c}} 
{0}&{1}\\ 
{0}&{0} 
\end{array}} \right),E=\left( {\begin{array}{*{20}{c}} 
{1}&{0}\\ 
{0}&{1} 
\end{array}} \right)$$ 
  $F$已为若尔当形。而 
$$G^2=\left( {\begin{array}{*{20}{c}} 
{0}&{2J}\\ 
{0}&{0} 
\end{array}} \right),G^3=0$$ 
  $G$的若尔当形中一阶若尔当块个数为 
$$r(G^0)+r(G^2)-2r(G)=4+1-2 \times 2=1$$ 
  而二阶若尔当块个数为 
$$r(G)+r(G^3)-2r(G^2)=2+0-2 \times 1=0$$ 
  三阶若尔当块个数为 
$$r(G^2)+r(G^4)-2r(G^3)=1+0-0=1$$ 
  故$G$的若尔当形为 
$$\left( {\begin{array}{*{20}{c}} 
{0}&{0}&{0}&{0}\\ 
{0}&{0}&{1}&{0}\\ 
{0}&{0}&{0}&{1}\\ 
{0}&{0}&{0}&{0} 
\end{array}} \right)$$ 
  与$F$的若尔当形不同,从而$F$与$G$不相似。其原因是,现在 
$$r(F)=r(A)+r(B)=r(J)+r(J)=2=r(G)$$ 
  但 
$$AC+CB=0$$ 
  而 
$$AD+DB=2J \ne 0$$ |   
 
 
 
 |