| 
 | 
	
 
习题二9: 
  给定数域$K$上的二次型$f=X'AX$。设$f$的秩为$r$ 
(1)证明$f$可用三角形变换化为 
$$g=\lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ry_r^2(\lambda_i \ne 0,i=1,2,\cdots,r)$$ 
  的充分必要条件是 
$$D_k=A\left\{\begin{array}{*{20}{c}} 
{1}&{2}&{\cdots}&{k}\\ 
{1}&{2}&{\cdots}&{k} 
\end{array}\right\} \ne 0 (k=1,2,\cdots,r)$$ 
  而 
$$A\left\{\begin{array}{*{20}{c}} 
{1}&{2}&{\cdots}&{k}\\ 
{1}&{2}&{\cdots}&{k} 
\end{array}\right\}=0 (k=r+1,\cdots,n)$$ 
(2)证明上题中的标准形$g$的系数满足 
$$\lambda_k=\frac{D_k}{D_{k-1}}(k=1,2,\cdots,r;D_0=1)$$ 
 
  
解: 
  若$f$经三角形变换$X=TY$化为 
$$g=\lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ry_r^2$$ 
  $g$的矩阵为 
$$\left( {\begin{array}{*{20}{c}} 
{\lambda_1}&{}&{}&{}&{}&{}&{}\\ 
{}&{\lambda_2}&{}&{}&{}&{}&{}\\ 
{}&{}&{\ddots}&{}&{}&{}&{}\\ 
{}&{}&{}&{\lambda_r}&{}&{}&{}\\ 
{}&{}&{}&{}&{0}&{}&{}\\ 
{}&{}&{}&{}&{}&{\ddots}&{}\\ 
{}&{}&{}&{}&{}&{}&{0} 
\end{array}} \right)$$ 
  按照《蓝以中上册 双线性函数与二次型 359页 习题二8 解答》,我们有 
$$D_k=A\left\{\begin{array}{*{20}{c}} 
{1}&{2}&{\cdots}&{k}\\ 
{1}&{2}&{\cdots}&{k} 
\end{array}\right\}=G\left\{\begin{array}{*{20}{c}} 
{1}&{2}&{\cdots}&{k}\\ 
{1}&{2}&{\cdots}&{k} 
\end{array}\right\}=\lambda_1\lambda_2\cdots\lambda_k \ne 0(k=1,2,\cdots,r)$$ 
  而 
$$A\left\{\begin{array}{*{20}{c}} 
{1}&{2}&{\cdots}&{k}\\ 
{1}&{2}&{\cdots}&{k} 
\end{array}\right\}=G\left\{\begin{array}{*{20}{c}} 
{1}&{2}&{\cdots}&{k}\\ 
{1}&{2}&{\cdots}&{k} 
\end{array}\right\}=0(k=r+1,\cdots,n)$$ 
  根据上面的结果,我们显然有(令$D_0=1$) 
$$\lambda_k=\frac{D_k}{D_{k-1}}(k=1,2,\cdots,r)$$ 
  现在来证明充分性。对变量数$n$作数学归纳法 
  $n=1$时$f$已是标准形,只需作恒等变数替换 
$$X=EY$$ 
  设对$n-1$个变元的二次型充分性已成立。则当 
$$f=\sum\limits_{i=1}^n\sum\limits_{j=1}^na_{ij}x_ix_j=X'AX$$ 
  时,设 
$$A\left\{\begin{array}{*{20}{c}} 
{1}&{2}&{\cdots}&{k}\\ 
{1}&{2}&{\cdots}&{k} 
\end{array}\right\} \ne 0(k=1,2,\cdots,r)$$ 
$$A\left\{\begin{array}{*{20}{c}} 
{1}&{2}&{\cdots}&{k}\\ 
{1}&{2}&{\cdots}&{k} 
\end{array}\right\}=0(k=r+1,\cdots,n)$$ 
  现在 
$$a_{11}=A\left\{\begin{array}{*{20}{c}} 
{1}\\ 
{1} 
\end{array}\right\} \ne 0$$ 
  应用配方法,即作三角形变换 
$$\begin{eqnarray*} 
X&=&\left( {\begin{array}{*{20}{c}} 
{x_1}\\ 
{x_2}\\ 
{\vdots}\\ 
{x_n} 
\end{array}} \right)=\left( {\begin{array}{*{20}{c}} 
{1}&{-\frac{a_{12}}{a_{11}}}&{\cdots}&{-\frac{a_{1n}}{a_{11}}}\\ 
{}&{1}&{}&{}\\ 
{}&{}&{\ddots}&{}\\ 
{}&{}&{}&{1} 
\end{array}} \right)\left( {\begin{array}{*{20}{c}} 
{y_1}\\ 
{y_2}\\ 
{\vdots}\\ 
{y_n} 
\end{array}} \right)\\ 
&=&TY 
\end{eqnarray*}$$ 
  则$f$化做 
$$g=a_{11}y_1^2+\sum\limits_{i=2}^n\sum\limits_{j=2}^nb_{ij}y_iy_j=Y'BY$$ 
  其矩阵为 
$$B=\left( {\begin{array}{*{20}{c}} 
{a_{11}}&{}\\ 
{}&{B_1} 
\end{array}} \right)$$ 
  若 
$$r=1$$ 
  则 
$$1=r(B)=r(B_1)+1$$ 
  故 
$$r(B_1)=0$$ 
  即 
$$B_1=0$$ 
  命题已证。下面设 
$$r>1$$ 
  现在 
$$\begin{eqnarray*} 
B_1\left\{\begin{array}{*{20}{c}} 
{1}&{2}&{\cdots}&{k}\\ 
{1}&{2}&{\cdots}&{k} 
\end{array}\right\}&=&\frac{1}{a_{11}}B\left\{\begin{array}{*{20}{c}} 
{1}&{2}&{\cdots}&{k+1}\\ 
{1}&{2}&{\cdots}&{k+1} 
\end{array}\right\}\\ 
&=&\frac{1}{a_{11}}A\left\{\begin{array}{*{20}{c}} 
{1}&{2}&{\cdots}&{k+1}\\ 
{1}&{2}&{\cdots}&{k+1} 
\end{array}\right\} \ne 0 
\end{eqnarray*}$$ 
  这里 
$$k=1,2,\cdots,r-1$$ 
  而 
$$\begin{eqnarray*} 
B_1\left\{\begin{array}{*{20}{c}} 
{1}&{2}&{\cdots}&{k}\\ 
{1}&{2}&{\cdots}&{k} 
\end{array}\right\}&=&\frac{1}{a_{11}}B\left\{\begin{array}{*{20}{c}} 
{1}&{2}&{\cdots}&{k+1}\\ 
{1}&{2}&{\cdots}&{k+1} 
\end{array}\right\}\\ 
&=&\frac{1}{a_{11}}A\left\{\begin{array}{*{20}{c}} 
{1}&{2}&{\cdots}&{k+1}\\ 
{1}&{2}&{\cdots}&{k+1} 
\end{array}\right\}=0 
\end{eqnarray*}$$ 
  这里 
$$k=r,r+1,\cdots,n-1$$ 
  按归纳假设,有三角形变换 
$$\left( {\begin{array}{*{20}{c}} 
{y_2}\\ 
{y_3}\\ 
{\vdots}\\ 
{y_n} 
\end{array}} \right)=T_1\left( {\begin{array}{*{20}{c}} 
{z_2}\\ 
{z_3}\\ 
{\vdots}\\ 
{z_n} 
\end{array}} \right)$$ 
  使 
$$\sum\limits_{i=2}^n\sum\limits_{j=2}^nb_{ij}y_iy_j=\lambda_2z_2^2+\cdots+\lambda_rz_r^2$$ 
  作三角形变换 
$$Y=\left( {\begin{array}{*{20}{c}} 
{y_1}\\ 
{y_2}\\ 
{\vdots}\\ 
{y_n} 
\end{array}} \right)=\left( {\begin{array}{*{20}{c}} 
{1}&{0}\\ 
{0}&{T_1} 
\end{array}} \right)\left( {\begin{array}{*{20}{c}} 
{z_1}\\ 
{z_2}\\ 
{\vdots}\\ 
{z_n} 
\end{array}} \right)=T_2Z$$ 
  则 
$$\begin{eqnarray*} 
g&=&Y'BY=Z'(T'_2BT_2)Z\\ 
&=&a_{11}z_1^2+\lambda_2z_2^2+\cdots+\lambda_rz_r^2 
\end{eqnarray*}$$ 
  现在$TT_2$仍是主对角线上为$1$的上三角矩阵,在三角变换 
$$X=(TT_2)Z$$ 
  下 
$$\begin{eqnarray*} 
f&=&X'AX=Z'(T'_2T'ATT_2)Z\\ 
&=&Z'(T'_2BT_2)Z\\ 
&=&a_{11}z_1^2+\lambda_2z_2^2+\cdots+\lambda_rz_r^2 
\end{eqnarray*}$$ |   
 
 
 
 |