| 
 | 
	
 
习题二8: 
  给定数域$K$上的$n$元二次型 
$$f=X'AX$$ 
  对它作可逆线性变数替换 
$$X=TY$$ 
  其中$T$为主对角线上元素全为$1$的上三角矩阵,$f$经此变换化为二次型 
$$g=Y'BY$$ 
  证明$A$与$B$的下列子式相等 
$$A\left\{\begin{array}{*{20}{c}} 
{1}&{2}&{\cdots}&{r}\\ 
{1}&{2}&{\cdots}&{r} 
\end{array}\right\}=B\left\{\begin{array}{*{20}{c}} 
{1}&{2}&{\cdots}&{r}\\ 
{1}&{2}&{\cdots}&{r} 
\end{array}\right\},r=1,2,\cdots,n$$ 
  此类线性变数替换 
$$X=TY$$ 
  成为三角形变换。 
 
  
解: 
  设 
$$T=\left( {\begin{array}{*{20}{c}} 
{1}&{t_{12}}&{}&{\cdots}&{t_{1n}}\\ 
{}&{1}&{t_{23}}&{\cdots}&{t_{2n}}\\ 
{}&{}&{\ddots}&{}&{\vdots}\\ 
{}&{}&{}&{\ddots}&{\vdots}\\ 
{}&{}&{}&{}&{1} 
\end{array}} \right)$$ 
  令 
$$X=TY$$ 
  则 
$$f=X'AX=Y'(T'AT)Y=Y'BY$$ 
  这里 
$$B=T'AT$$ 
  现对$A,T,B$进行分块 
$$A=\left( {\begin{array}{*{20}{c}} 
{A_1}&{A_2}\\ 
{A_3}&{A_4} 
\end{array}} \right),T=\left( {\begin{array}{*{20}{c}} 
{T_1}&{T_2}\\ 
{}&{T_3} 
\end{array}} \right),B=\left( {\begin{array}{*{20}{c}} 
{B_1}&{B_2}\\ 
{B_3}&{B_4} 
\end{array}} \right)$$ 
  其中$A_1,T_1,B_1$均为$r$阶方阵。我们有 
$$\begin{eqnarray*} 
T'AT&=&\left( {\begin{array}{*{20}{c}} 
{T'_1}&{}\\ 
{T'_2}&{T'_3} 
\end{array}} \right)\left( {\begin{array}{*{20}{c}} 
{A_1}&{A_2}\\ 
{A_3}&{A_4} 
\end{array}} \right)\left( {\begin{array}{*{20}{c}} 
{T_1}&{T_2}\\ 
{}&{T_3} 
\end{array}} \right)\\ 
&=&\left( {\begin{array}{*{20}{c}} 
{T'_1A_1T_1}&{T'_1A_1T_2+T'_1A_2T_3}\\ 
{T'_2A_1T_1+T'_3A_3T_1}&{T'_2A_1T_2+T'_3A_3T_2+T'_2A_2T_3+T'_3A_4T_3} 
\end{array}} \right)\\ 
&=&\left( {\begin{array}{*{20}{c}} 
{B_1}&{B_2}\\ 
{B_2}&{B_4} 
\end{array}} \right) 
\end{eqnarray*}$$ 
  因此 
$$B_1=T'_1A_1T_1$$ 
  我们有 
$$\begin{eqnarray*} 
B\left\{\begin{array}{*{20}{c}} 
{1}&{2}&{\cdots}&{r}\\ 
{1}&{2}&{\cdots}&{r} 
\end{array}\right\}&=&|B_1|=|T'_1A_1T_1|=|T_1|^2|A_1|\\ 
&=&|A_1|=A\left\{\begin{array}{*{20}{c}} 
{1}&{2}&{\cdots}&{r}\\ 
{1}&{2}&{\cdots}&{r} 
\end{array}\right\} 
\end{eqnarray*}$$ |   
 
 
 
 |