|  | 
 
| 练习5.4.16: 设$f(x)$是以$2\pi$为周期的函数,在$[-\pi,\pi]$上可积,则已知它$Fourier$级数的部分和$S_n(x)$可表示为$Dirichlet$积分
 $$S_n(x)=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x+t)\frac{\sin\left(n+\frac{1}{2}\right)t}{2\sin\frac{t}{2}}dt$$
 其中
 $$\frac{\sin\left(n+\frac{1}{2}\right)t}{2\sin\frac{t}{2}}=\frac{1}{2}+\cos t+\cos 2t+\cdots+\cos nt \equiv D_n(t)$$
 称为$Dirichlet$核。$S_n(x)$的平均值
 $$\sigma_n(x)=\frac{1}{n}\sum\limits_{k=0}^{n-1}S_k(x)$$
 称为$Cesaro$和。试证:
 (1)
 $$D_0(x)+\cdots+D_{n-1}(x)=\frac{1}{2}\left(\frac{\sin\frac{n}{2}x}{\sin\frac{x}{2}}\right)^2;$$
 (2)
 $$\frac{1}{2n\pi}\int_{-\pi}^{\pi}\left(\frac{\sin\frac{n}{2}x}{\sin\frac{x}{2}}\right)^2dx=1;$$
 (3)
 $$\forall \delta>0, \frac{1}{n\pi}\int_{\delta}^{\pi}\left(\frac{\sin\frac{n}{2}x}{\sin\frac{x}{2}}\right)^2dx \to 0(当n \to \infty时);$$
 (4)若$f(x)$是以$2\pi$为周期的连续函数,则$n \to \infty$时,$\sigma_n(x) \Rightarrow f(x)$于$[-\pi,\pi]$上。
 
 
 
 解:
 (1)
 $$\begin{eqnarray*}
 \sum\limits_{k=0}^{n-1}D_k(x)&=&\frac{1}{2\sin\frac{x}{2}}\sum\limits_{k=0}^{n-1}\sin\left(k+\frac{1}{2}\right)x\\
 &=&\frac{1}{2\sin\frac{x}{2}}\left(\sum\limits_{k=0}^{n-1}\left(\sin kx\cos\frac{x}{2}\right)+\sum\limits_{k=0}^{n-1}\left(\cos kx\sin\frac{x}{2}\right)\right)\\
 &=&\frac{1}{2\sin\frac{x}{2}}\left(\frac{1-\cos nx}{2\sin\frac{x}{2}}\right)=\frac{1}{2}\left(\frac{\sin\frac{n}{2}x}{\sin\frac{x}{2}}\right)^2
 \end{eqnarray*}$$
 (2)
 $$\begin{eqnarray*}
 \sigma_n(x)&=&\frac{1}{n}\sum\limits_{k=0}^{n-1}S_k(x)=\frac{1}{n\pi}\sum\limits_{k=0}^{n-1}\int_{-\pi}^{\pi}f(x+t)\frac{\sin\left(k+\frac{1}{2}\right)t}{2\sin\frac{t}{2}}dt\\
 &=&\frac{1}{2n\pi}\int_{-\pi}^{\pi}f(x+t)\sum\limits_{k=0}^{n-1}\frac{\sin\left(k+\frac{1}{2}\right)t}{2\sin\frac{t}{2}}dt\\
 &=&\frac{1}{2n\pi}\int_{-\pi}^{\pi}f(x+t)\left(\frac{\sin\frac{n}{2}t}{\sin\frac{t}{2}}\right)^2dt
 \end{eqnarray*}$$
 特别地,取$f(x)=1$,这时$S_n(x)=1$,所以$\sigma_n(x)=1$
 于是,就有
 $$\frac{1}{2n\pi}\int_{-\pi}^{\pi}\left(\frac{\sin\frac{n}{2}x}{\sin\frac{x}{2}}\right)^2dx=1$$
 (3)令
 $$I=\frac{1}{n\pi}\int_{\delta}^{\pi}\left(\frac{\sin\frac{n}{2}x}{\sin\frac{x}{2}}\right)^2dx$$
 则
 $$|I|=\frac{1}{n\pi}\int_{\delta}^{\pi}\left(\frac{\sin\frac{n}{2}x}{\sin\frac{x}{2}}\right)^2dx \le \frac{1}{n\pi\sin^2\frac{\delta}{2}}\int_{\delta}^{\pi}dx=\frac{\pi-\delta}{n\pi\sin^2\frac{\delta}{2}}$$
 于是,$\forall \epsilon>0$,$\exists N=\left[\frac{\pi-\delta}{\pi\epsilon\sin^2\frac{\delta}{2}}\right]+1$,当$n>N$时,有$|I|<\epsilon$
 故
 $$\frac{1}{n\pi}\int_{\delta}^{\pi}\left(\frac{\sin\frac{n}{2}x}{\sin\frac{x}{2}}\right)^2dx \to 0(当n \to \infty时)$$
 (4)由(2)的结论可知
 $$f(x)=\frac{1}{2n\pi}\int_{-\pi}^{\pi}f(x)\left(\frac{\sin\frac{n}{2}t}{\sin\frac{t}{2}}\right)^2dt$$
 于是
 $$\begin{eqnarray*}
 \sigma_n(x)-f(x)&=&\frac{1}{2n\pi}\int_{-\pi}^{\pi}[f(x+t)-f(x)]\left(\frac{\sin\frac{n}{2}t}{\sin\frac{t}{2}}\right)^2dt\\
 &=&\frac{1}{2n\pi}\int_0^{\pi}[f(x+t)+f(x-t)-2f(x)]\left(\frac{\sin\frac{n}{2}t}{\sin\frac{t}{2}}\right)^2dt
 \end{eqnarray*}$$
 令
 $$\phi_x(t)=f(x+t)+f(x-t)-2f(x)$$
 由于$f(x)$是连续函数,故在闭区间$[-2\pi,2\pi]$上一致连续
 对于$\forall \epsilon>0$,$\exists \delta \in (0,\pi)$,使得$\forall t \in (0,\delta)$时,有
 $$|f(x+t)-f(x)|<\frac{\epsilon}{2}, |f(x-t)-f(x)|<\frac{\epsilon}{2}, \forall x \in [-\pi,\pi]$$
 因而
 $$|\phi_x(t)| \le |f(x+t)-f(x)|+|f(x-t)-f(x)|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$$
 令
 $$M=\max\limits_{x \in [-\pi,\pi]}|f(x)|$$
 当
 $$n > \frac{2M}{\sin^2\frac{\delta}{2}}$$
 时,有
 $$\begin{eqnarray*}
 |\sigma_n(x)-f(x)|&=&\left|\frac{1}{2n\pi}\int_0^{\delta}\phi_x(t)\left(\frac{\sin\frac{n}{2}t}{\sin\frac{t}{2}}\right)^2dt+\frac{1}{2n\pi}\int_{\delta}^{\pi}\phi_x(t)\left(\frac{\sin\frac{n}{2}t}{\sin\frac{t}{2}}\right)^2dt \right|\\
 &\le&\frac{\epsilon}{2n\pi}\int_0^{\pi}\left(\frac{\sin\frac{n}{2}t}{\sin\frac{t}{2}}\right)^2dt+\frac{2M}{n\sin^2\frac{\delta}{2}}\\
 &<&\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
 \end{eqnarray*}$$
 因此当$n \to \infty$,$\forall x \in [-\pi,\pi]$,$\sigma_n(x) \Rightarrow f(x)$
 再由周期性,有
 $$n \to \infty,\forall x \in R,\sigma_n(x) \Rightarrow f(x)$$
 即$f(x)$的$Fourier$级数在$Cesaro$意义下一致收敛于$f(x)$。
 
 | 
 |