数学之家

标题: 蓝以中下册 带度量的线性空间 41页 习题二24 解答 [打印本页]

作者: castelu    时间: 2016-7-19 18:30
标题: 蓝以中下册 带度量的线性空间 41页 习题二24 解答
习题二24:
  设$A,B$是$n$维欧式空间$V$内的两个对称变换。证明:$V$内存在一组标准正交基
$$\epsilon_1,\epsilon_2,\cdots,\epsilon_n$$
  使$A,B$在此组基下的矩阵同时成对角形的充分必要条件是
$$AB=BA$$



解:
  必要性
  可以认为
$$\epsilon_1,\epsilon_2,\cdots,\epsilon_n$$
  是由$A,B$的公共特征向量构成的标准正交基
$$A(\epsilon_1,\epsilon_2,\cdots,\epsilon_n)=(\epsilon_1,\epsilon_2,\cdots,\epsilon_n)\left( {\begin{array}{*{20}{c}}
{\lambda_1}&{}&{}&{}\\
{}&{\lambda_2}&{}&{}\\
{}&{}&{\ddots}&{}\\
{}&{}&{}&{\lambda_n}
\end{array}} \right)$$
$$B(\epsilon_1,\epsilon_2,\cdots,\epsilon_n)=(\epsilon_1,\epsilon_2,\cdots,\epsilon_n)\left( {\begin{array}{*{20}{c}}
{\mu_1}&{}&{}&{}\\
{}&{\mu_2}&{}&{}\\
{}&{}&{\ddots}&{}\\
{}&{}&{}&{\mu_n}
\end{array}} \right)$$
$$AB(\epsilon_1,\epsilon_2,\cdots,\epsilon_n)=(\epsilon_1,\epsilon_2,\cdots,\epsilon_n)\left( {\begin{array}{*{20}{c}}
{\lambda_1\mu_1}&{}&{}&{}\\
{}&{\lambda_2\mu_2}&{}&{}\\
{}&{}&{\ddots}&{}\\
{}&{}&{}&{\lambda_n\mu_n}
\end{array}} \right)$$
$$BA(\epsilon_1,\epsilon_2,\cdots,\epsilon_n)=(\epsilon_1,\epsilon_2,\cdots,\epsilon_n)\left( {\begin{array}{*{20}{c}}
{\lambda_1\mu_1}&{}&{}&{}\\
{}&{\lambda_2\mu_2}&{}&{}\\
{}&{}&{\ddots}&{}\\
{}&{}&{}&{\lambda_n\mu_n}
\end{array}} \right)$$
  所以
$$AB=BA$$
  充分性
  因为$A$的矩阵可对角化,设$A$的全部互不相同的特征值为
$$\lambda_1,\lambda_2,\cdots,\lambda_k$$
  有
$$V=V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_k}$$
  对任意
$$\alpha \in V_{\lambda_i}$$
$$A(B\alpha)=B(A\alpha)=\lambda_iB\alpha$$
  这表明
$$B\alpha \in V_{\lambda_i}$$
  即$V_{\lambda_i}$是$B$的不变子空间
  $B|_{V_{\lambda_i}}$在此组标准正交基下矩阵成对角形
  而$A|_{V_{\lambda_i}}$在此组标准正交基下矩阵为$\lambda_i E$
  把每个$V_{\lambda_i}$内这一组标准正交基合并即为$V$的一组标准正交基
  (因为$V_{\lambda_i}$的向量与$V_{\lambda_j}$中向量,当$i \ne j$时都正交)
  在此组标准正交基下$A,B$的矩阵都是对角矩阵。




欢迎光临 数学之家 (http://www.2math.cn/) Powered by Discuz! X3.1