数学之家

标题: 蓝以中上册 行列式 195页 习题一28 解答 [打印本页]

作者: castelu    时间: 2016-5-16 21:31
标题: 蓝以中上册 行列式 195页 习题一28 解答
习题一28:
  试计算下面$n$阶行列式:
$$\left| {\begin{array}{*{20}{c}}
{1}&{1}&{\cdots}&{1}\\
{\cos\alpha_1}&{\cos\alpha_2}&{\cdots}&{\cos\alpha_n}\\
{\cos2\alpha_1}&{\cos2\alpha_2}&{\cdots}&{\cos2\alpha_n}\\
{\vdots}&{\vdots}&{}&{\vdots}\\
{\cos(n-1)\alpha_1}&{\cos(n-1)\alpha_2}&{\cdots}&{\cos(n-1)\alpha_n}
\end{array}} \right|$$



解:
  记
$$D_n=\left| {\begin{array}{*{20}{c}}
{1}&{1}&{\cdots}&{1}\\
{\cos\alpha_1}&{\cos\alpha_2}&{\cdots}&{\cos\alpha_n}\\
{\cos2\alpha_1}&{\cos2\alpha_2}&{\cdots}&{\cos2\alpha_n}\\
{\vdots}&{\vdots}&{}&{\vdots}\\
{\cos(n-1)\alpha_1}&{\cos(n-1)\alpha_2}&{\cdots}&{\cos(n-1)\alpha_n}
\end{array}} \right|$$
  事实上,$\cos nx$可以表为$\cos x$的多项式
  当$n=1$时,$\cos x=\cos x$;当$n=2$时,$\cos 2x=2\cos^2x-1$
  归纳假设对$k=n-1$和$k=n$时成立
  当$k=n+1$时
$$\begin{eqnarray*}
\cos (n+1)x&=&\cos nx\cos x-\sin nx\sin x\\
&=&\cos nx\cos x-[\sin x\sin (n-1)x\cos x+\cos (n-1)x(1-\cos^2x)]\\
&=&\cos nx\cos x-\sin x\sin (n-1)x\cos x-\cos (n-1)x+\cos (n-1)x\cos^2x\\
&=&2\cos nx\cos x-\cos (n-1)x
\end{eqnarray*}$$
  所以$\cos nx$可以表为$\cos x$的多项式
  更进一步地,$\cos nx$满足$Chebyshev$多项式,首项系数为$2^{n-1}$,其中$n>1$
  将$D_n$从第二行起,每行都表示成$\cos \alpha_i(i=1,2,\cdots,n)$的多项式
  应用初等变换,可以得到
$$\begin{eqnarray*}D_n&=&2^{\sum\limits_{i=1}^{n-2}i}\left| {\begin{array}{*{20}{c}}
{1}&{1}&{\cdots}&{1}\\
{\cos\alpha_1}&{\cos\alpha_2}&{\cdots}&{\cos\alpha_n}\\
{\cos^2\alpha_1}&{\cos^2\alpha_2}&{\cdots}&{\cos^2\alpha_n}\\
{\vdots}&{\vdots}&{}&{\vdots}\\
{\cos^{n-1}\alpha_1}&{\cos^{n-1}\alpha_2}&{\cdots}&{\cos^{n-1}\alpha_n}
\end{array}} \right|\\
&=&2^{\frac{(n-1)(n-2)}{2}}\prod\limits_{1 \le i<j \le n}(\cos \alpha_j-\cos \alpha_i)
\end{eqnarray*}$$




欢迎光临 数学之家 (http://www.2math.cn/) Powered by Discuz! X3.1