数学之家

标题: 裴礼文 级数 579页 练习5.3.7 解答 [打印本页]

作者: castelu    时间: 2016-4-26 23:55
标题: 裴礼文 级数 579页 练习5.3.7 解答
练习5.3.7:
  设
$$\frac{v_n}{v_{n-1}}=a\sqrt{\frac{n-1}{n+1}}, n=2,3,\cdots, |a|<1$$
$$x_{n+1}=x_n+cv_n^2, n=1,2,\cdots,c>0$$
  求$\lim\limits_{n \to +\infty}x_n$



解:
  级数
$$\sum\limits_{n=1}^{\infty}(x_{n+1}-x_n)$$
  与极限
$$\lim\limits_{n \to \infty}x_n$$
  同敛态
  且
$$\lim\limits_{n \to \infty}x_n=\sum\limits_{n=1}^{\infty}(x_{n+1}-x_n)+x_1$$
  由递推表达式
$$v_n=v_{n-1}a\sqrt{\frac{n-1}{n+1}}=v_{n-2}a^2\sqrt{\frac{(n-1)(n-2)}{(n+1)n}}=\cdots=v_1a^{n-1}\sqrt{\frac{2(n-1)!}{(n+1)!}}$$
  于是
$$x_{n+1}-x_n=cv_n^2=2cv_1^2\frac{a^{2n-2}}{n(n+1)}$$
  所以
$$\begin{eqnarray*}
\sum\limits_{n=1}^{\infty}(x_{n+1}-x_n)&=&2cv_1^2\sum\limits_{n=1}^{\infty}\frac{a^{2n-2}}{n(n+1)}\\
&=&2cv_1^2\left(\sum\limits_{n=1}^{\infty}\frac{a^{2n-2}}{n}-\sum\limits_{n=1}^{\infty}\frac{a^{2n-2}}{n+1}\right)\\
&=&2cv_1^2\left(1+\sum\limits_{n=2}^{\infty}\frac{a^{2n-2}-a^{2n-4}}{n}\right)
\end{eqnarray*}$$
  记
$$S_n(x)=\sum\limits_{n=2}^{\infty}\frac{a^{2n-2}-a^{2n-4}}{n}x^n$$
  由$D'Alembert$判别法可知,幂级数$S_n(x)$的收敛半径为$1$
$$S_n'(x)=\sum\limits_{n=2}^{\infty}(a^{2n-2}-a^{2n-4})x^{n-1}=\frac{a^2-1}{1-a^2x}$$
  于是
$$S_n(x)=\int_0^x \frac{a^2-1}{1-a^2t}dt=\left(\frac{1-a^2}{a^2}\right)\ln(1-a^2x)$$
  所以
$$S_n(1)=\sum\limits_{n=2}^{\infty}\frac{a^{2n-2}-a^{2n-4}}{n}=\left(\frac{1-a^2}{a^2}\right)\ln(1-a^2)$$
  也即
$$\sum\limits_{n=1}^{\infty}(x_{n+1}-x_n)=2cv_1^2\left(1+\left(\frac{1-a^2}{a^2}\right)\ln(1-a^2)\right)$$
  得到
$$\lim\limits_{n \to \infty}x_n=2cv_1^2\left(1+\left(\frac{1-a^2}{a^2}\right)\ln(1-a^2)\right)+x_1$$




欢迎光临 数学之家 (http://www.2math.cn/) Powered by Discuz! X3.1