数学之家

标题: 裴礼文 一元积分学 393页 练习4.4.6 解答 [打印本页]

作者: castelu    时间: 2016-4-18 23:28
标题: 裴礼文 一元积分学 393页 练习4.4.6 解答
练习4.4.6:

  设函数$f(x)$在$[a,b]$上有连续导数,$f(a)=f(b)=0$。试证:
$$\int_a^b|f(x)f'(x)|dx \le \frac{b-a}{4}\int_a^bf'^2(x)dx$$
  并且
$$\frac{b-a}{4}$$
  不能再小。



解:
  设
$$F(x)=\int_a^x|f'(t)|dt, G(x)=\int_x^b|f'(t)|dt$$
  则
$$当x \in \left[a,\frac{a+b}{2}\right], |f(x)|=\left|\int_a^x f'(t)dt \right| \le F(x)$$
$$当x \in \left[\frac{a+b}{2},b \right], |f(x)|=\left|\int_x^b f'(t)dt \right| \le G(x)$$
$$\begin{eqnarray*}
\int_a^b|f(x)f'(x)|dx&=&\int_a^{\frac{a+b}{2}}|f(x)f'(x)|dx+\int_{\frac{a+b}{2}}^b|f(x)f'(x)|dx\\
&\le&\int_a^{\frac{a+b}{2}}F(x)F'(x)dx+\int_{\frac{a+b}{2}}^bG(x)G'(x)dx\\
&=&\frac{1}{2}F^2\left(\frac{a+b}{2}\right)+\frac{1}{2}G^2\left(\frac{a+b}{2}\right)\\
&\le&\frac{1}{2}\int_a^{\frac{a+b}{2}}1^2dx\cdot\int_a^{\frac{a+b}{2}}f'^2(x)dx+\frac{1}{2}\int_{\frac{a+b}{2}}^b1^2dx\cdot\int_{\frac{a+b}{2}}^bf'^2(x)dx\\
&=&\frac{b-a}{4}\int_a^bf'^2(x)dx
\end{eqnarray*}$$
  等号成立,当且仅当
$$f(x)=\left\{ \begin{array}{l}
c(x-a), x \in \left[a,\frac{a+b}{2}\right]\\
-c(x-b), x \in  \left[\frac{a+b}{2},b \right]
\end{array} \right.(c \ne 0)$$
  上述函数满足
$$f(a)=f(b)=0$$
  若还要$f(x)$连续可微
$$f(x) \equiv 0$$
  若不然,$f(x)$在
$$x=\frac{a+b}{2}$$
  处不可微
  即知
$$\frac{b-a}{4}$$
  不能再小。




欢迎光临 数学之家 (http://www.2math.cn/) Powered by Discuz! X3.1