数学之家

标题: 有关sin(x^2)的无穷积分 [打印本页]

作者: castelu    时间: 2012-7-13 23:59
标题: 有关sin(x^2)的无穷积分
有关sinx^2的无穷积分

  我们知道,不定积分$\int \sin x^2{\rm d}x$的原函数不是初等函数。但是,无穷积分$\int_0^{+\infty} \sin x^2{\rm d}x$的值是可求的。
  我们计算$\int_0^{+\infty} \sin x^2{\rm d}x$的值:
假定$\int_0^{+\infty} e^{-x^2}{\rm d}x$已知
(证明:http://www.2math.cn/thread-3959-1-1.html
构造含参量反常积分
$$\int_0^{+\infty} e^{-xy^2}{\rm d}y=\frac{\sqrt \pi}{2\sqrt x}$$
于是,得到
$$\frac{1}{\sqrt x}=\frac{2}{\sqrt \pi} \int_0^{+\infty} e^{-xy^2}{\rm d}y$$
考察
$$\int_0^{+\infty} \sin x^2{\rm d}x$$
利用变量代换$\sqrt x=t$,则${\rm d}x=\frac{1}{2\sqrt t}{\rm d}t$,即有
$$\int_0^{+\infty} \sin (x^2){\rm d}x=\frac{1}{2}\int_0^{+\infty} \frac{\sin x}{\sqrt x}{\rm d}x=\frac{1}{\sqrt \pi}\int_0^{+\infty} \frac{\sqrt \pi \sin x}{2\sqrt x}{\rm d}x$$
$$=\frac{1}{\sqrt \pi}\int_0^{+\infty} {\rm d}x \int_0^{+\infty} \sin xe^{-xy^2}{\rm d}y(利用已经构造的无穷积分)$$
$$=\frac{1}{\sqrt \pi}\int_0^{+\infty} {\rm d}y \int_0^{+\infty} \sin xe^{-xy^2}{\rm d}x(一致收敛,交换积分次序)$$

$$I(y)=\int_0^{+\infty} \sin xe^{-xy^2}{\rm d}x$$
首次分部积分,得到
$$I(y)=1-y^2\int_0^{+\infty} \cos xe^{-xy^2}{\rm d}x$$
再次分部积分,得到
$$I(y)=1-y^4\int_0^{+\infty} \sin xe^{-xy^2}{\rm d}x$$
利用复原法,即有
$$I(y)=1-y^4I(y)$$
解方程,即有
$$I(y)=\frac{1}{1+y^4}$$
代入交换次序以后的无穷积分,得到
$$\int_0^{+\infty} \sin x^2{\rm d}x=\frac{1}{\sqrt \pi}\int_0^{+\infty} \frac{1}{1+y^4}{\rm d}y$$
$$=\frac{1}{\sqrt \pi}[\frac{\sqrt 2}{4}\arctan \frac{x^2-1}{\sqrt 2x}+\frac{1}{4\sqrt 2}\ln |\frac{x^2+\sqrt 2x+1}{x^2-\sqrt 2x+1}|]_0^{+\infty}=\frac{\sqrt {2\pi}}{4}$$





欢迎光临 数学之家 (http://www.2math.cn/) Powered by Discuz! X3.1