| 
 | 
	
解:因为对任何x∈R,有  
f(x+13/42)+f(x)=f(x+1/6)+f(x+1/7),  
故f(x+7/42)-f(x)=f(x+13/42)-f(x+6/42)  
````````````````=f(x+19/43)-f(x+12/42)  
````````````````=……=f(x+49/42)-f(x+42/42).  
即f(x+42/42)-f(x)=f(x+49/42)-f(x+7/42)……(1)  
同样,有  
f(x+7/42)-f(x+1/42)=f(x+14/42)-f(x+8/42)  
```````````````````=f(x+21/42)-f(x+15/42)  
```````````````````=……=f(x+49/42)-f(x+43/42)-f(x)  
即f(x+49/42)-f(x)=f(x+43/42)-f(x+1/42)……(2)  
由(1)(2),得  
f(x+42/42)-f(x)=f(x+43/42)-f(x+1/42)  
```````````````=f(x+44/42)-f(x+2/42)  
```````````````=……=f(x+84/42)-f(x+42/42),  
即f(x+1)-f(x)=f(x+2)-f(x+1).  
因此,f(x+n)=f(x)+n[f(x+1)-f(x)]对所有n∈N成立.  
又因为对所有x∈R,|f(x)|≤1,即f(x)有界,故只有f(x+1)-f(x)≡0.  
因此对所有x∈R,f(x+1)=f(x),即f(x)为周期函数 |   
 
 
 
 |