数学之家

建站
数学爱好者的家园
 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 2597|回复: 0
打印 上一主题 下一主题

[数学分析] 高阶微分

[复制链接]
跳转到指定楼层
楼主
发表于 2017-11-8 19:06:11 | 显示全部楼层 回帖奖励 |倒序浏览 |阅读模式
  我们知道函数$y=f(x)$的一阶微分是
$$dy=f'(x)dx,$$
  其中变量$x$和$dx$是相互独立的。现将一阶微分只作为$x$的函数,若$f$二阶可导,那么$dx$对自变量$x$的微分
$$d(dy)=d(f'(x)dx)=f''(x)dx \cdot dx=f''(x)(dx)^2,$$
  或写作
$$d^2y=f''(x)dx^2,$$
称它为函数$f$的二阶微分。

 这里$dx^2$是指$(dx)^2$;$d^2x$表示$x$的二阶微分$(d^2x=0)$;而$d(x^2)$则表示$x^2$的一阶微分$(d(x^2)=2xdx)$。三者不能混淆。

  一般地,$n$阶微分是$n-1$阶微分的微分,记作$d^ny$,即
$$d^ny=d(d^{n-1}y)=d(f^{(n-1)}(x)dx^{n-1})=f^{(n)}(x)dx^n。$$
  若将它写成
$$\frac{d^ny}{dx^n}=f^{(n)}(x)$$
  时,就和$n$阶导数的记法一致了。
  对$n \ge 2$的$n$阶微分均称为高阶微分。
  一阶微分具有形式不变性,而对于高阶微分来说已经不具备这个性质了。以二阶微分为例,当$x$为$y=f(x)$的自变量时,
$$d^2y=f''(x)dx^2。$$
  当$x$为复合函数$y=f(x)$,$x = \phi(t)$的中间变量时,$y=f(\phi(t))$作为$t$的函数,关于$t$的一阶微分可以写作
$$dy=f'(x)dx,$$
  其中$dx= \phi'(t)dt$;而对$t$的二阶微分则为
$$d^2y = (f(\phi(t)))''dt^2=(f'(\phi(t)) \phi'(t))'dt^2=[f''(\phi(t))(\phi'(t))^2+f'(\phi(t)) \phi''(t)]dt^2=f''(x)dx^2+f'(x)d^2x,$$
  比一阶微分多了一项,这说明二阶微分已不再具有形式不变性。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 分享淘帖 顶 踩
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|网站统计|手机版|小黑屋|数学之家    

GMT+8, 2024-11-1 07:09 , Processed in 1.406250 second(s), 20 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表